Oscillation criteria for self-adjoint fourth order differential equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillation criteria for certain fourth order nonlinear functional differential equations

Some new criteria for the oscillation of the fourth order functional differential equation d dt ( 1 a3(t) ( d dt 1 a2(t) ( d dt 1 a1(t) ( d dt x(t) )α1)α2)α3) + δq(t) f (x[g(t)]) = 0, where δ = ±1 are established. c © 2006 Elsevier Ltd. All rights reserved.

متن کامل

Oscillation Criteria for Fourth-Order Nonlinear Dynamic Equations

Some oscillatory criteria for fourth order difference and differential equations are generalized to arbitrary time scales.

متن کامل

New Oscillation Criteria for Fourth-Order Difference Equations

In this work, oscillatory behavior of solutions of a class of fourth order neutral functional difference equations of the form ∆ ( r(n)∆(y(n) + p(n)y(n−m)) ) + q(n)G(y(n− k)) = 0 is studied under the assumption ∞ ∑

متن کامل

Oscillation Results for Second Order Self-adjoint Matrix Differential Systems

on [0,∞), where Y (t), P (t) and Q(t) are n × n real continuous matrix functions on [0,∞) with P (t), Q(t) symmetric and P (t) positive definite for t ∈ [0,∞) (P (t) > 0, t ≥ 0). A solution Y (t) of (1.1) is said to be nontrivial if det Y (t) 6= 0 for at least one t ∈ [0,∞) and a nontrivial solution Y (t) of (1.1) is said to be prepared (selfconjugated) if Y ∗(t)P (t)Y ′(t)− Y ∗′(t)P (t)Y (t) ≡...

متن کامل

Sharp Oscillation Criteria for Fourth Order Sub-half-linear and Super-half-linear Differential Equations

This paper is concerned with the oscillatory behavior of the fourth-order nonlinear differential equation (E) (p(t)|x| x)′′ + q(t)|x|x = 0 , where α > 0, β > 0 are constants and p, q : [a,∞) → (0,∞) are continuous functions satisfying conditions

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 1982

ISSN: 0022-0396

DOI: 10.1016/0022-0396(82)90115-2